
CPS311 - COMPUTER ORGANIZATION

A Brief Introduction to the MIPS Architecture

A bit of history

The MIPS architecture grows out of an early 1980's research project at Stanford University.   In 
1984, MIPS computer corporation was founded to commercialize this research.  However, CPU 
chips based on the MIPS architecture have been produced by a number of different companies, 
including LSI Logic, Toshiba, Philips, NEC, IDT, and NKK.   Though the architecture is a 
quarter of a century old, MIPS-architecture chips are widely used in current systems such as 
CISCO Routers,, TiVo Series 2 and many other embedded applications including set-top boxes 
for digital TV, cable modems, DVD recorders, and printers.   We use it in this course, because of 
its clean and simple architecture.

The MIPS architecture itself has passed through a series of evolutions, known as MIPS I, MIPS 
II, MIPS III, and MIPS IV.  Each successive ISA is a superset of the preceding one - so  anything 
found in MIPS I is also found in MIPS II, III, and IV,  etc.  The MIPS I and II ISA's were 32 bit 
architectures.  MIPS III  added 64 bit capabilities - but with the core 32 bit architecture as a 
subset, and MIPS IV expanded on this.  This handout deals only with a subset of the  core MIPS 
I architecture.

Basic Architecture

The following diagram shows the basic architecture of a MIPS-based system:
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CPU Registers
 
The CPU has 32 32-bit general registers that are usable in instructions.  With two exceptions, 
from a hardware standpoint these have identical capabilities and any register can be used by the 
programmer for any purposes.  The two exceptions are these:

· $0 is “hardwired” to always contain 0.  If used as a source register in an instruction, the 
value used will always be 0.  If an instruction attempts to store a value into it, the 
operation is legal but will be ignored. 

· $31 plays a special role in the jal (jump and link) instruction.  It is otherwise like any 
other general register.

While the rest of the general registers are interchangeable from a hardware standpoint, there are 
some well-established software conventions about how the general registers are used, which one 
must adhere to if writing a program that is to work correctly with the system libraries and/or 
code generated by standard software development tools, as well as with multi-user operating 
systems.  Accordingly, The registers have both “generic” and “special” names - in fact, some 
have two similar special names.  Only the generic names and the special names that begin with $ 
can be used in assembly language code unless the assembly-language program contains 
#include <regdef.h> - then any form can be used.

· 
Generic	 Special	 Conventional use
name 	 name(s)

$0	 zero	 Hardwired to always be 0
$1	 at	 Reserved for the assembler (do not use)
$2, $3	 v0, v1	 Return values from procedures
$4 .. $7	 a0 .. a3	 Arguments of procedure calls
$8 .. $15	 t0 .. t7	 Temporary registers - procedures may use these 	
$24, $25	 t8, t9	   freely
$16 .. $23	 s0 .. s7	 Saved registers - a procedure which alters one of
	 	 these must save its value on the stack and restore
	 	  it before returning to the caller
$26, $27	 k0, k1	 Reserved for operating system kernel (do not use)
$28	 $gp, gp	 Points to memory region containing global variables
$29	 $sp, sp	 Points to memory region containing stack
$30	 $fp, fp	 Points to memory region containing stack frame for
	 	 current procedure; also known as $s8 and treated
	 	 as a saved register if not needed for this purpose
$31	 ra	 Holds return address from current procedure

 
Note that, by convention, general register numbers are specified in decimal.

In addition to the general registers, the CPU also contains three 32-bit special registers:

· pc - program counter - always contains the address of next instruction to be executed.  
Because all MIPS instructions are one 32-bit word long and must reside at an address 
which is a multiple of 4, this register always contains a value that is a multiple of 4.
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· 

· hi, lo - hold result of a multiplication or division.  Note that multiplying two 32-bit 
numbers can produce a product that is up to 64 bits long, and division actually produces 
two results (a quotient and a remainder) - hence the need for two registers for this.  hi 
holds the most significant 32 its of a 64 bit product from a multiplication, or the remainder 
from a division.  (lo holds the least significant 32 bits of a product or the quotient.)

Memory

Memory is byte-addressable, using a 32-bit address (so it could consist of up to 4 GB of 
memory)  Data in memory can be accessed 8, 16, or 32 bits at a time.  32 bits is referred to as a 
“word” and 16 bits as a “half word” and 8 bits is, of course, called a “byte”.  All instructions are 
one word long.

Words must have an address that is a multiple of 4, and half-words must have an address that is a 
multiple of 2.  Words and half-words are stored in “big-endian” fashion. - e.g. given the memory 
contents below:

Address	 Contents

0x100	 	 0xaa
0x101	 	 0xbb
0x102	 	 0xcc
0x103	 	 0xdd

The word whose address is 0x100 contains 0xaabbccdd.  
It would be illegal to try to access a word using addresses 0x101, 0x102, 0x103.  

The half word whose address is 0x100 contains 0xaabb.  
The half word whose address is 0x102 contains 0xccdd. 
It would be illegal to try to access a half word using addresses 0x101, 0x103.

IO Devices  

The CPU has two basic modes of operation: user mode and kernel mode.  On a workstation, only 
the “kernel” of the operating system runs with the CPU in kernel mode.  Most operating system 
code, and all user applications, run with the CPU in user mode.  (On embedded systems, all 
operations may be performed in kernel mode.)

Access to IO devices is a function that can only be done with the CPU in kernel mode - i.e. it is 
an operating system function on workstations.  We will not discuss kernel mode operations, 
including access to IO devices, in this handout.  (Programs written in assembly language 
typically use system library routines for IO operations.)
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Coprocessors

The MIPS ISA includes provision for attaching up to 4 coprocessors to the system (although 
more than 2 is rare).  The main CPU handles all instruction fetching and decoding; but certain 
instructions are then dispatched to one of the coprocessors to be executed (i.e. all the CPU does 
is to recognize it as a coprocessor instruction and send it to the correct coprocessor).  The CPU 
also handles transfer of data between CPU registers and the coprocessor.    Coprocessors can 
either be separate chips, or they can be integrated into the CPU chips.

All MIPS systems include a coprocessor 0 on chip - this is what actually does the kernel mode 
operations such as memory management.    Because the basic MIPS ISA only provides for 
integer operations,  floating point operations are handled by a floating-point coprocessor 
(coprocessor 1), which has its own floating-point register set.  For early implementations, this 
was a separate chip; current implementations either incorporate the floating point coprocessor on 
the main chip or omit it totally.  We will not discuss floating point operations in this handout, nor 
will we discuss other coprocessors.
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Basic MIPS Instructions

R-Type Instructions

Arithmetic, logical, and shift-type operations are performed on MIPS using R-Type instructions, 
which encode the operation to be performed and three general registers (two sources and a 
destination).  Shift instructions may also encode the number of places to shift.  It is conventional, 
in MIPS documentation, to refer to the two source registers as rs and rt, and the destination 
register as rd.  Each of these is actually encoded in the instruction as a 5-bit integer that specifies 
one of the 32 general registers.  In assembly language, the registers can be specified by using 
their generic names (e.g. $8) or their special names (e.g. t0) if the program includes <regdef.h>

MIPS Assembly Language	
 C Equivalent	
 Notes

add	 rd, rs, rt	 rd = rs + rt;	 Note 1
addu	 rd, rs, rt	 rd = rs + rt;	 Note 1
sub	 rd, rs, rt	 rd = rs - rt;	 Note 1
subu	 rd, rs, rt	 rd = rs - rt;	 Note 1
and	 rd, rs, rt	 rd = rs & rt;	 Note 2
or	 rd, rs, rt	 rd = rs | rt;	 Note 2
xor	 rd, rs, rt	 rd = rs ^ rt;	 Note 2
nor	 rd, rs, rt	 rd = ~(rs | rt);	 Note 2
sll	 rd, rt, amount	 rd = rt << amount;	 Note 3
srl	 rd, rt, amount	 rd = (unsigned) rt >> amount;	 Notes 3, 4
sra	 rd, rt, amount	 rd = (signed) rt >> amount;	 Notes 3, 4
sllv	 rd, rt, rs	 rd = rt << rs;	 Note 3
srlv	 rd, rt, rs	 rd = (unsigned) rt >> rs;	 Notes 3, 4
srav	 rd, rt, rs	 rd = (signed) rt >> rs;	 Notes 3, 4
slt	 rd, rs, rt	 rd = (rs < rt);	 Note 5
sltu	 rd, rs, rt	 rd = (rs < rt);	 Note 5
mult	 rs, rt	 hilo = rs * rt;	 Notes 6, 7
multu	 rs, rt	 hilo = rs * rt;	 Notes 6, 7
div	 rs, rt	 hi = rs % rt; lo = rs / rt;	 Notes 6, 7
divu	 rs, rt	 hi = rs % rt; lo = rs / rt;	 Notes 6, 7
mfhi	 rd	 rd = hi;	 Note 6
mflo	 rd	 rd = lo;	 Note 6

Notes:

1.	
 There are two different versions of the add instruction (add and addu).  Each instruction 
does the exact same computation.  Where they differ is how they handle overflow.  The 
add  instruction regards its operands as two’s complement signed integers, and throws an 
exception if there is two’s complement overflow.  The addu instruction does not check for 
overflow.  

	
 The same distinction exists for the subtract instructions (sub and subu).  

	
 The “u” in the name of two of the instructions stands for “unsigned” - since different 
overflow rules are used for unsigned numbers.  However, the “u” instructions do not 
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throw an exception if there is unsigned overflow - they don’t check for overflow at all.  
(Hence it may be better to think of the “u” as meaning “unchecked”).  Compilers 
typically generate the “u” form of these instructions in all cases, regardless of the 
declared types of the operands, since the specifications for languages like C don’t call for 
overflow checking.  Assembly language programmers should likewise use the “u” form 
of the instructions unless one wants to explicitly test for and handle overflow - something 
which can only be done when code is written in assembly language.

2. 	
 These are bitwise logical operations on integers, not boolean operations (note the use of & 
and | in the C code, not  && or ||).  If used with the constants 0 and 1, they also 
correspond to the boolean operations, of course.

3.	
 There are two versions of each shift instruction.  The “non-v” form hard codes the 
number of places to shift into the instruction (in the shamt field); the “v” form uses the 
contents of a register to specify the number of places to shift.  (Actually, only the 
rightmost 5 bits of the register are used, since shifting a 32-bit number more than 31 
places is meaningless.)  For the “non-v” form, only one source register is specified - the 
assembler fills the field in the instruction that would specify rs with 0’s.  Note carefully 
the order of the operands in the “v” form!

4.	
 There are two versions of the right shift instructions - sra/srav and srl/srlv.  These 
differ in how they handle what bit is shifted into the sign position.  The “a” stands for 
“arithmetic” shift.  This version treats its operand as a two’s-complement signed number, 
and preserves its sign by sign propagation - e.g. if the sign if 1 before the shift, then a 1 is 
shifted into the sign position.  The “l” stands for “logical” shift - a 0 is always shifted into 
the leftmost position.   Compilers emit the “a” instruction when the operand being shifted 
is a signed number, and the “l” form when it is unsigned.  Note that this distinction is 
only an issue for right shifts; the left shift always shifts in a 0. 

Example: if some register contains 0xfffffffe (-2), sra would produce 0xffffffff (-1), 
but srl would produce 0x7fffffff.

5.	
 slt means “set if less than”.  The destination register is set to 1 if the first source operand 
is less than the second; it is set to 0 otherwise.  The “non-u” form treats the operands as 
signed numbers; the “u” form treats them as unsigned.  To see why this is important, note 
that 0xffffffff < 0xfffffffe if both are regarded as signed numbers, but 
0xffffffff > 0xfffffffe if they are unsigned. We will see in the discussion of 
conditional branching below where slt/sltu is useful.
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6.	
 The multiply and divide instructions do not specify a destination register, for two reasons:

· The need to use the hi and lo registers to store the results (a 64-bit product or a 
quotient and a remainder).
· Execution of these operations takes more than one cycle.  The MIPS multiply unit is 
set up to run in parallel with the rest of the CPU once a multiplication or division is 
started, with the results being retrieved from hi and lo later. 
· 

	
 The mult/multu and div/divu instructions start the multiply-divide unit performing the 
operation.  The CPU continues performing subsequent instructions in parallel with the 
multiplication/division.  

The mfhi and mflo instructions are later used to move the results to general registers.  Of 
course, there is no good way of knowing when this is (and the extra time needed varies 
from 5 to 80 cycles depending on the operation and the implementation).   Therefore, 
these instructions are interlocked - if one is executed before the result is available, 
execution of further instructions by the CPU is stalled until the result becomes available.  
For this reason, a new multiply or divide operation must not be started until the result of 
the previous one has been retrieved.

	
 Multiplication and division by powers of 2 can be done by shifting left or right, which is 
faster than using explicit multiply or divide instructions.  (In fact, an optimizing compiler 
will often convert multiplication or division by a constant into shift and/or add 
instructions in the generated code.)

7.	
 There are distinct versions of the multiply and divide instructions for signed and unsigned 
numbers.  In this case, the computation done is different - e.g. 0xffffffff * 0xffffffff 
= 1 if the operands are signed numbers, but a very big number if they are unsigned!
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Immediate Instructions

For certain operations, it is also possible to specify a constant as one of the two operands.  The 
constant is coded into the instruction as a 16-bit integer; therefore, it must lie in the range 
-32678 ≤ constant ≤ 32767 (for addi, addiu, slti, sltiu) or 0 ≤ constant ≤ 65535 (for andi, 
ori, xori).  The constant is turned into a 32-bit value either by filling the upper 16 bits with a 
copy of the sign bit (addi, addiu, slti, sltiu) or with 0’s (andi, ori, xori). [Note that even 
the “unsigned” instructions sign-extend the immediate value!] (For larger constants,  it is 
necessary to use several instructions).

MIPS Assembly Language	
 C Equivalent	
 Notes
addi	 rd, rs, constant	 rd = rs + constant;	 Notes 1,2,3
addiu	 rd, rs, constant	 rd = rs + constant;	 Notes 1,2
andi	 rd, rs, constant	 rd = rs & (unsigned) constant
ori	 rd, rs, constant	 rd = rs | (unsigned) constant	 Note 3
xori	 rd, rs, constant	 rd = rs ^ (unsigned) constant
slti	 rd, rs, constant	 rd = (rs < constant)	 Note 1
sltiu	 rd, rs, constant	 rd = (rs < constant)	 Note 1
lui	 rd, constant	 rd = constant << 16;	 Note 4

Notes:

1.	
 The two forms of addi and slti are distinguished just like the two forms of add, slt. 

2.	
 There is no subi.  One can subtract a constant by using addi with a negative value.

3.	
 The standard way to load a (small enough) constant value into a register is to use either 
the addi or the ori instruction with $0 as the register source.  (addi is used for a negative 
signed value, ori for a positive value, though addiu could also be used.)

Example: Load 0x2a into $4 and -1 into $5:

	
 	
 ori	 $4, $0, 0x2a
	 	 	 addi	 $5, $0, -1

4	
 The lui instruction is used to allow 32-bit constants.  It places the 16 bit constant value 
specified in the instruction into the upper half of the destination register, and clears the 
lower half of the register to all 0’s.  For example, suppose we wanted to place the 
constant 0xaabbccdd into $4.   Since the constant requires more than 16 bits, we do this as 
follows. 

	
 	
 lui	 $4, 0xaabb
	 	 	 ori	 $4, $4, 0xccdd

Note that the lower bits are loaded with ori; if addi were used, they would be sign-
extended, filling all 16 upper bits of the immediate constant with 1’s, and thus turning all 
the 16 upper bits of the $4 to 1’s after orring!  Note, too, that the ori is done second, since 
otherwise the lui would wipe out the value placed in the lower bits by ori!
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Memory Reference (Load/Store) Instructions

RISC architectures like MIPS require that the operands of arithmetic and logical operations be in 
registers.  Load and store instructions are included in the ISA to allow copying values between 
memory and registers.  There are five different load instructions, and three different store 
instructions, to allow for accessing bytes, halfwords, or words in memory.  (Values in registers 
are always words, of course)

	
 lw	 Copies a 32-bit word from memory into a register
	 lh	 Copies a 16-bit signed halfword from memory into a 	
	 	  register; the upper 16 bits of the register are filled
	 	  with a copy of the sign bit
	 lhu	 Same - but unsigned; the upper 16 bits of the register are
	 	  filled with 0’s
	 lb	 Copies an 8-bit signed byte from memory into a 	
	 	  register; the upper 24 bits of the register are filled
	 	  with a copy of the sign bit
	 lbu	 Same - but unsigned; the upper 24 bits of the register are
	 	  filled with 0’s
	 sw	 Copies a 32-bit word from a register into memory
	 sh	 Copies the rightmost 16 bits of a register into a halfword
	 	  in memory (the other 16 bits of the register are ignored)
	 sb	 Copies the rightmost 8 bits of a register into a byte
	 	  in memory (the other 24 bits of the register are ignored)

These memory-reference instructions specify an address in memory in terms of a register plus a 
16-bit signed offset encoded into the instruction.  The address in memory to access is calculated 
by adding the register and the offset.  (The register is not changed - the calculated address is not 
stored anywhere.)  Because any general register can be used, this supports various ways to 
specify an address - including the following:

· Access a specific address in the lowest-address part of memory: encode the address in 
the offset part of the instruction, and specify $0 as the base register.    (Only works for 
addresses ≤ 32867).

Example: Load the word at address 0x100 into $4:	

	 lw	 $4, 0x100($0)

· Access a global variable.  Many compilers use the “global pointer” register ($gp - $28) 
to point to a region of memory in which global variables are stored.  Specific variables are 
then accessed as an offset relative to $gp.  Because the hardware treats the offset appearing 
in an instruction as a 16-bit signed number, $gp is set to point to the middle of the area, 
and the first global variable is stored at the most negative possible offset relative to the 
$gp.

Example: Load the very first global variable in a program (assume its an int) into 
$4:	

	 lw	 $4, 0xfffc($0)
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· Access a variable at any location in memory: use two instructions - one to load the high 
order bits of the address into some register, and one to access the data, using the low order 
bits of the address as an offset.   (The assembler reserves at - $1 - for this purpose.)  This 
is a bit tricky, since the hardware interprets the offset as a signed number - thus if there is a 
“1” in bit position 15 of the address, then the register needs to contain the high order bits 
of the address plus one to compensate for the sign extension done by the CPU.

Example: Load a variable at an arbitrary location in memory into $4:

	
 lui $1, hi 16 bits of address of somevariable (possibly + 1)
	 lw $4, lo 16 bits of address of somevariable($1)
	  
· Access a local variable of the current procedure.  Most compilers put the local variables 
of a procedure into a contiguous part of the run-time stack in memory, and  and arrange for 
the frame pointer register ($fp = $30) to point to it.   A specific variable is accessed at a 
constant offset relative to the base of this area.  (Only works if the total size of all local 
variables for a given procedure is ≤ 65536).  (No example given because this depends on 
details of the structure of a procedure’s frame which is determined by the compiler)Access 
a variable based on a pointer that is stored in a register: use an offset of 0 with the 
specified register.

Example: Suppose $4 holds a pointer to an integer.  Store $5 into it:

	 sw	 $5, 0($4)	 # Note that register being stored from is written
	 	 	 	 # first for consistency with loads - contrary to
	 	 	 	 # normal “destination first” order

· Access a specific field within a structure pointed to by a pointer that is stored in a 
register: use the distance of the field from the start of the structure as the offset relative to 
the specified register.

Example: Given C declarations as follows:

	
 struct student
	 {
	 	 char name[11];	 // Occupies 12 bytes - one for terminating \0
	 	 int age
	 };
	 student * s;

Store the value in $4 into s -> age. Assume $2 is not currently being used.
	

	
 lw	 $2, s
	 sw	 $4, 0xc($2)
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Conditional Branch Instructions

The basic MIPS conditional branch instructions compare two registers, and branch if they are (or 
are not) equal.  The address to branch to is encoded in the instruction as a 16-bit signed integer 
which specifies an offset in words, relative to the address of the next instruction. 

Because only 16 bits are available for the offset in the encoding, a conditional branch can reach 
forward up to 32767 instructions, or backwards up to 32768 instructions.  Longer reaches must 
be encoded by using a conditional branch to skip over a jump. 

MIPS Assembly Language	
 C Equivalent	
 Notes

beq	 rs, rt, label	 if (rs == rt) goto label	 Notes 1, 2
bne	 rs, rt, label	 if (rs != rt) goto label	 Notes 1, 2

Notes:

1.	
 The assembler figures  out the correct offset based on the symbolic label used.

Example: Assume the following code fragment assembles into the memory addresses 
shown:

	
 MIPS Assembly Language	
 	
 	
 C Equivalent

	
 	
 beq	 rs, rt, else	 #code goes into 0x1000	 	 if (rs != rt)
	 	 ... a series of instructions in 0x1004..0x10ff	 { ... }
	 else:	 ...	 	 #code goes into 0x1100

Then the offset encoded into the branch instruction would be calculated as the number of 
words between next instruction and target = (0x1100 - 0x1004) / 4 = 0xfc/4 = 0x3f

2.	
 It might seem that the MIPS ISA is deficient in not including conditional branches based 
on relative order (e.g. “branch if less than”).  Actually, any comparison between two 
values can by synthesized by using  slt in conjunction with beq or bne.

Example: Branch to foo  if  $4 < $5.  Assume 2 is not currently being used.
	 slt	 $2, $4, $5
	 bne	 $2, $0, foo	 	 # if $4 < $5, $2 contains 1 ≠ 0

Example: Branch to foo  if  $4 ≤ $5.  Assume $2 is not currently being used.
	 slt	 $2, $5, $4	 	 # $2 contains 0 iff $4 ≤ $5 
	 	 	 	 # (i.e. !($5 < $4) )
	 beq	 $2, $0, foo	
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Jump Instructions

The branch instructions discussed above use 16 bits to encode a target address, relative to the 
current instruction, making most of memory “out of reach” from any given location. For most 
control structures that call for conditional branches, this is not a serious problem, since control 
structures such as if, for, and  while are usually much smaller than 32768 instructions.  There 
are times, though, when it is necessary to transfer control to an arbitrary location.

One of the instructions listed below uses a register to hold the target address, and so can specify 
any 32-bit target address.   The other two use 26 bits in the encoding for a literal address.  This is 
shifted left two places (i.e. multiplied by 4) since instruction addresses must be a multiple of 4; 
and the high order 4 bits of the target address are taken from the current value in the pc.  (Thus, 
these instructions can reach any location within the 256 MB region of memory that contains the 
jump instruction - the jr instruction must be used to reach a completely arbitrary location in 
memory, but this is rarely necessary since must programs fit in 256 MB!)

MIPS Assembly Language	
 C Equivalent	
 Notes
· 

jr	 rs	 (Used w/$31 to translate return)
j	 label	 goto label	
jal	 label	 label()	 Note 1

Notes:
· 

1.	
 This is the instruction used for procedure call. The address of the next instruction after 
the jal  is saved in register  ra ($31), which allows the called procedure to return to the 
caller by using jr $31.
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MIPS Instruction Encoding

MIPS instructions are always one word (32 bits) long.  Basic MIPS instructions have one of 
three formats.  The instruction format is always implied by the opcode, which is the leftmost 6 
bits of the instruction.

31   26 25                               0 

opcode  usage depends on format

The opcode determines the format.  All R-Format instructions discussed in this handout have an 
opcode of 0 .  J-Format instructions have opcodes of 2 or 3.  All other values correspond to I–
Format instructions, or to instructions not discussed in this handout (e.g. instructions that are 
passed to a coprocessor for execution) 

R Format:
31   26 25  21 20  16 15  11 10  6 5     0 

opcode   rs     rt     rd       shamt   func

This format is used for all the R-Type instructions, as well as for the jr instruction.  Note that 
this format provides fields for specifying the 3 registers used by R-Type instructions, as well as a 
shamt field used by “non-v” shift instructions.  A number of instructions do not use one or more 
of the fields, as indicated in the table below.  Fields that are unused should be 0.

Note well that the registers appear in most assembly language instructions in the order 
rd,rs,rt, but are physically encoded in the instruction in the order rs,rt,rd.  For the 
“non-v” type shift instructions, the assembly language order is rd,rt,rs.

For all of the R-Type instructions considered in this handout, plus jr, the opcode is always 0.  
The specific operation to be performed is specified by the func field, as follows:
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Assembler mnemonic	
 func (Note)

sll	 0 (1)
srl	 2 (1)
sra	 3 (1)
sllv	 4
srlv	 6
srav	 7
jr	 8 (2)
mfhi	 0x10 (3)
mflo	 0x12 (3)
mult	 0x18 (4)
multu	 0x19 (4)
div	 0x1a (4)
divu	 0x1b (4)
add	 0x20
addu	 0x21
sub	 0x22
subu	 0x23

Assembler mnemonic	
 func (Note)

and	 0x24
or	 0x25
xor	 0x26
nor	 0x27
slt	 0x2a
sltu	 0x2b

Notes:

1.	 rs is not used - encoded as 0. 
shamt is used to specify amount. 
(all other instructions encode 
shamt 0).

2.	 rt, rd not used - encoded as 0
3.	 rs, rt not used - encoded as 0
4.	 rd not used - encoded as 0
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I Format:
31   26 25  21 20  16 15                 0 

opcode   rs      rt      16 bit value
	 	   or rd

 

This format is used for three different types of MIPS instruction

· Immediate instructions (the registers are called rs and rd above; the 16 bit value is the 
constant)

Note well that the registers appear in assembly language instructions in the order 
rd,rs, but are physically encoded in the instruction in the order rs,rd.

· Memory Reference instructions  (the registers are called rs and rt above; the 16 bit 
value is the offset to be added to rs to compute the memory address)

Note well that the registers appear in assembly language instructions in the order 
rt,rs, but are physically encoded in the instruction in the order rs,rt.

· Conditional branch instructions (the registers are called rs and rt above; the 16 bit value 
is shifted left two places and added to the pc if the branch is taken)

Note well that the order of listing the registers is the same in both assembly language 
and the physical encoding.  (Not that it would not matter anyway since == and != are 
commutative!)

The opcode determines what operation is to be performed, as follows:

Assembler mnemonic	
 opcode

beq	 0x4
bne	 0x5
addi	 0x8
addiu	 0x9
slti	 0xa
sltiu	 0xb
andi	 0xc
ori	 0xd
xori	 0xe
lui	 0xf

Assembler mnemonic	
 opcode

lb	 0x20
lh	 0x21
lw	 0x23
lbu	 0x24
lhu	 0x25
sb		 0x28
sh		 0x29
sw		 0x2b
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J Format
31   26 25                               0 

opcode            26 bit value
 

This format is used by the Jump instructions - except jr, which uses the R Format. 

Assembler mnemonic	
 opcode

j	 2

Assembler mnemonic	
 opcode

jal	 3
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Some Examples of Instruction Encoding

1.Subtract $8 from $9, storing the result in $10.   (Equivalent to C: $10 = $9 - $8)

Assembly language:

	
 sub	 $10, $9, $8

Machine language encoding.

	
 opcode = 0 (R-Format)
	 rs = 9; rt = 8; rd = 10; shamt unused (= 0); func = 0x22

	 000000 01001 01000 01010 00000 100010	 (binary)
	 0000 0001 0010 1000 0101 0000 0010 0010	 (regrouping)
	 0x01285022	 (hexadecimal)

2.Add 0x2a to $8, storing the result in $10  (Equivalent to C: $10 = $8 + 0x2a)  

Assembly language:

	
 addi	 $10, $8, 0x2a 

Machine language encoding. 

	
 opcode = 8 (I-Format - immediate type)
	 rs = 8; rd = 10; constant = 0x2a

	
 001000 01000 01010 0000000000101010	 (binary)
	 0010 0001 0000 1010 0000 0000 0010 1010	 (regrouping)
	 0x0210a002a	 (hexadecimal)

3.Load the [9] element of an array of ints into register $10.   Assume $8 has previously 
been loaded with the starting address of the array.    (Equivalent to C: $10 = * ($8 + 9), 
if $8 is a C variable declared as int * )

Assembly language: (Note that the [9] element of the array is 9 x 4 = 3610 = 0x24
	 	 bytes from the beginning of the array) 	


	
 lw	 $10, 0x24($8) 

Machine language encoding. 

	
 opcode = 0x23 (I-Format - memory reference)
	 rs = 8; rt = 10; constant = 0x24

	
 100011 01000 01010 0000000000100100	 (binary)
	 1000 1101 0000 1010 0000 0000 0010 0100	 (regrouping)
	 0x8d0a0024	 (hexadecimal)
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4.Branch to some location in the program if registers $8 and $9 are not equal to each other.    
Assume that this “somewhere” is 100 bytes beyond the branch instruction.   
(Equivalent to C: if ($8 != $9) goto somewhere)

Assembly language:

	
 bne $8, $9, somewhere # Note: assembler figures out the offset

Machine language encoding. 

	
 opcode = 0x5 (I-Format - conditional branch)
	 rs = 8; rt = 9
	 Constant is calculated as follows: target is 10010 ahead of the
	 branch instruction, so 9610 ahead of the next instruction.  This
	 is encoded as a word offset - 9610/4 = 2410 = 0x18.

	
 000101 01000 01001 0000000000011000	 (binary)
	 0001 0101 0000 1001 0000 0000 0001 1000	 (regrouping)
	 0x15090018	 (hexadecimal)

5.Call some procedure.  Assume that it starts at address 0x2000, which is in the same 
segment of memory as the code calling it.  (Equivalent to C: someprocedure())

Assembly language:

	
 jal someprocedure # Note: assembler plugs in address

Machine language encoding.  

	
 opcode = 0x3 (J-Format)
	 Constant is calculated by expressing target address in words. 	
	 0x2000/4 = 0x800

	
 000011 00000000000000100000000000	 (binary)
	 0000 1100 0000 0000 0000 1000 0000 0000	 (regrouping)
	 0x0c000800	 (hexadecimal)

6.Return from current procedure. (Equivalent to C: return or falling off end of the code).

Assembly language:

	
 jr $31

Machine language encoding.  

	
 opcode = 0 (R-Format)
	 rs = 0x1f; rt, rd, shamt unused (= 0); func = 0x8

	
 000000 11111 00000 00000 00000 001000	 (binary)
	 0000 0011 1110 0000 0000 0000 0000 1000	 (regrouping)
	 0x03e00008	 (hexadecimal)
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MIPS Assembler Pseudo-Instructions

In addition to tasks normally performed by assemblers (translating mnemonic opcodes and 
symbolic labels, calculating branch addresses, etc.), MIPS assemblers recognize a large number 
of psuedo-instructions which the assembler translates into an appropriate sequence of actual 
machine instructions.  The following are just a few examples.

nop (no operation)

There are times when one needs a machine instruction that does nothing (e.g. to deal with certain 
timing issues connected with the pipeline, which will be discussed later.)  There are a wide 
variety of instructions that could be used for this purpose - e.g. any R-Type instruction with a rd 
= $0 would work, since attempting to store a result in $0 is legal but ignored.  The assembler 
translates nop as sll $0, $0, 0 - which is a word of all 0’s.

Memory loads and stores from/to a variable (lw, lh, lhu, lb, lbu, sw, sh, sb).

The I-Format used to encode these instructions only allows for a 16 bit offset relative to a base 
register.  To access a variable at an arbitrary location in memory, it is necessary to first store the 
upper bits of the address (possibly plus 1) in a register.  

Clearly, calculating addresses like this could be quite painful!  For this reason, whenever the 
assembler sees a load/store instruction accessing a variable, it generates the appropriate two 
instruction sequence.  By software convention, register $1 (at) is reserved for this purpose.

Example: If the program contains

	
 lw	 $4, somevariable

The assembler generates code as if the programmer had written:

	
 lui $1, hi 16 bits of address of somevariable (possibly + 1)
	 lw  $4, lo 16 bits of address of somevariable($1)

la (load address)

There are times when it is necessary to place the address of a variable into some register - e.g. to 
access an array element (register contains the base address of the array).  The assembler 
translates the pseudo-instruction into a two instruction sequence that accomplishes this.

Example: If the program contains

	
 la	 $4, somevariable

The assembler generates code as if the programmer had written:

	
 lui $4, hi 16 bits of address of somevariable
	 ori $4, $4, lo 16 bits of address of somevariable
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